3.210 \(\int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=81 \[ \frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{10 a^2 \sin (c+d x)}{3 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

(2*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (10*a^2*Sin[c + d*x])/(3*d*Sqrt[Cos[c
 + d*x]]*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.118035, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2762, 21, 2771} \[ \frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{10 a^2 \sin (c+d x)}{3 d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]

[Out]

(2*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (10*a^2*Sin[c + d*x])/(3*d*Sqrt[Cos[c
 + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}-\frac{1}{3} (2 a) \int \frac{-\frac{5 a}{2}-\frac{5}{2} a \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{1}{3} (5 a) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}}+\frac{10 a^2 \sin (c+d x)}{3 d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.111688, size = 52, normalized size = 0.64 \[ \frac{2 a (5 \cos (c+d x)+1) \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)}}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]

[Out]

(2*a*Sqrt[a*(1 + Cos[c + d*x])]*(1 + 5*Cos[c + d*x])*Tan[(c + d*x)/2])/(3*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.331, size = 55, normalized size = 0.7 \begin{align*} -{\frac{2\,a \left ( 5\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-4\,\cos \left ( dx+c \right ) -1 \right ) }{3\,d\sin \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)/cos(d*x+c)^(5/2),x)

[Out]

-2/3/d*a*(5*cos(d*x+c)^2-4*cos(d*x+c)-1)*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.58303, size = 169, normalized size = 2.09 \begin{align*} \frac{4 \,{\left (\frac{3 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{5 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{2 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{3 \, d{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{5}{2}}{\left (-\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

4/3*(3*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 5*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3
 + 2*sqrt(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin
(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2))

________________________________________________________________________________________

Fricas [A]  time = 1.65885, size = 166, normalized size = 2.05 \begin{align*} \frac{2 \,{\left (5 \, a \cos \left (d x + c\right ) + a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/3*(5*a*cos(d*x + c) + a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^3 + d*cos(
d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(5/2), x)